Puth is Succes

CODE - S

AIEEE – 2011 TEST PAPER WITH ANSWER (HELD ON SUNDAY 01st MAY, 2011)

	PART A - C	HEMI	STRY		
1.	Silver Mirror test is given by which one of the		The entropy change involved in the isothermal		
	following compounds ?		reversible expansion of 2 moles of an ideal gas		
	(1) Formaldehyde (2) Benzophenone		from a volume of 10 dm ³ to a volume of		
	(3) Acetaldehyde (4) Acetone		100 dm ³ at 27°C is :-		
Ans.	(1,3)		(1) 32.3 J mol ⁻¹ K ⁻¹ (2) 42.3 J mol ⁻¹ K ⁻¹		
2.	A 5.2 molal aqueous solution of methyl alcohol, CH ₃ OH, is supplied. What is the mole fraction of methyl alcohol in the solution ? (1) 0.086 (2) 0.050 (3) 0.100 (4) 0.190		(3) 38.3 J mol ⁻¹ K ⁻¹ (4) 35.8 J mol ⁻¹ K ⁻¹		
			(3)		
			A vessel at 1000 K contains CO_2 with a		
			pressure of 0.5 atm. Some of the CO_2 is		
Ans (1)			converted into CO on the addition of graphite.		
3.	Trichloroacetaldehyde was subjected to		If the total pressure at equilibrium is 0.8 atm, the value of K is :-		
	Cannizzaro's reaction by using NaOH. The		(1) 0.3 atm (2) 0.18 atm		
	mixture of the products contains sodium		(3) 1.8 atm (4) 3 atm		
	trichloroacetate and another compound. The	Ans.			
	other compound is :-	8.	A gas absorbs a photon of 355 nm and emits		
	(1) 2,2,2–Trichloropropanol		at two wavelengths. If one of the emissions is		
	(2) Chloroform		at 680 nm, the other is at :-		
	(3) 2,2,2–Trichloroethanol		(1) 743 nm (2) 518 nm		
	(4) Trichloromethanol	A	(3) 1035 nm (4) 325 nm		
Ans.	(3)	Ans. 9.	(1) In a face centred cubic lattice, atom A occupies		
4.	The rate of a chemical reaction doubles for every 10°C rise of temperature. If the temperature is raised by 50°C, the rate of the		the corner positions and atom B occupies the		
			face centre positions. If one atom of B is		
			missing from one of the face centred points, the		
	reaction increases by about :-		formula of the compound is :-		
	(1) 32 times		(1) A_2B_3 (2) A_2B_5 (3) A_2B (4) AB_2		
	(2) 64 times	Ans.			
	(3) 10 times	10.	Among the following the maximum covalent		
	(4) 24 times		character is shown by the compound :- (1) AlCl ₃ (2) MgCl ₂		
Ans.			$(1) \operatorname{FaCl}_{3} \qquad (2) \operatorname{FaCl}_{2} \\ (3) \operatorname{FeCl}_{2} \qquad (4) \operatorname{SnCl}_{2} \\ (4) \operatorname{SnCl}_{2} \\ (5) \operatorname{SnCl}_{2} \\ (4) \operatorname{SnCl}_{2} \\ (5) SnCl$		
5.	'a' and 'b' are van der Waals' constants for gases.	Ans.			
	Chlorine is more easily liquefied than ethane				
	because :- (1) a for $Cl_2 < a$ for C_2H_6 but b for $Cl_2 > b$ for C_2H_6		Which one of the following orders presents the correct sequence of the increasing basic nature		
			of the given oxides ?		
	(2) a for $Cl_2 > a$ for C_2H_6 but b for $Cl_2 < b$ for		(1) $Na_2O < K_2O < MgO < Al_2O_3$		
	C ₂ H ₆		(2) $K_2O < Na_2O < Al_2O_3 < MgO$		
	(3) a and b for $Cl_2 > a$ and b for C_2H_6		(3) $Al_2O_3 < MgO < Na_2O < K_2O$		
	(4) a and b for Cl_2 < a and b for C_2H_6		$(4) MgO < K_2O < Al_2O_3 < Na_2O$		
Ans.	(2)	Ans.	(3)		

	AIEEE 201				CAREER INSTITUTE Rota (RAJASTHAN)
12.	The structure of IF ₇ is	3 :-	18. The strongest acid an		amongst the following
	(1) octahedral			compounds is ?	
	(2) pentagonal bipyra	mid		(1) CH ₃ CH ₂ CH(Cl)C	CO ₂ H
	(3) square pyramid			(2) $ClCH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$	ЮОН
	(4) trigonal bipyramic	ł		(3) CH ₃ COOH	
Ans.				(4) HCOOH	
13.	Identify the com	oound that exhibits	Ans.	(1)	
	tautomerism :-		19.	Sodium ethoxide ha	as reacted with ethanoy
	(1) 2-Pentanone	(2) Phenol		chloride. The compou	and that is produced in the
	(3) 2-Butene	(4) Lactic acid		above reaction is :-	
Ans.				(1) Ethyl chloride	(2) Ethyl ethanoate
L 4.		a solution of mixture of		(3) Diethyl ether	(4) 2-Butanone
		major product obtained	Ans.	(2)	
	in the above reaction		20.	The presence or abse	ence of hydroxy group or
	(1) 4-Bromophenol				f sugar differentiates RNA
	(2) 2,4,6-Tribromoph	enol		and DNA ?	th
	(3) 2-Bromophenol			(1) 3^{rd}	(2) 4^{th}
	(4) 3-Bromophenol			(3) 1^{st}	(4) 2^{nd}
Ans.	-		Ans.		
5.		as an antifreeze in a cold	21.		n configuration of G
	Ethylene glycol is used as an antifreeze in a cold climate. Mass of ethylene glycol which should			(Atomic No. : 64) is	
	•	water to prevent it from			(2) $4f^7 5d^1 6s^2$
	freezing at – 6°C will	-		(3) $4f^3 5d^5 6s^2$	(4) $4f^8 5d^0 6s^2$
	(K _f for water = $1.86 \text{ K kgmol}^{-1}$, and molar mass		Ans.		
	of ethylene $glycol = 0$	62 gmol ⁻¹)	22.	-	nt (spin only) of [NiCl ₄] ²
	(1) 400.00 g	(2) 304.60 g		is :-	
	(3) 804.32 g	(4) 204.30 g		(1) 2.82 BM	(2) 1.41 BM
Ans.	(3)			(3) 1.82 BM	(4) 5.46 BM
6.	The degree of dissociation (α) of a weak electrolyte, $A_x B_y$ is related to van't Hoff factor (i) by the expression :-		Ans.		
			23.	The hybridisation of orbitals of N atom in NO_3^- , NO_2^+ and NH_4^+ are respectively :-	
	(1) x + y - 1	(2) x + y + 1		 (1) sp, sp³, sp² (3) sp, sp², sp³ 	(2) sp , sp , sp (4) 2^{2} 3^{3}
	(1) $\alpha = \frac{x+y-1}{i-1}$	(2) $\alpha = \frac{1}{i-1}$			(4) sp , sp, sp
	(3) $\alpha = \frac{i-1}{(x+y-1)}$	(4) $\alpha = \frac{i-1}{i-1}$	Ans.		noonia commonadaina
	(3) $\alpha - \frac{1}{(x+y-1)}$	(4) $\alpha = \frac{1}{x+y+1}$	24.		rganic compound give
Ans.	(3)			•	e of the products. This
17. Boron cannot form which one of the following			confirms the presence(1) an isopropyl gro		
	anions ?				-
	(1) $B(OH)_{4}^{-}$	(2) BO_2^-		(2) an acetylenic trip	
	(3) BF_6^{3-}	(4) BH_4^-		(3) two ethylenic do	ouble bollus
Ans.	0	× / 4	A	(4) a vinyl group	
2/1			Ans.	(+)	

CODE - S

- **25.** Which of the following facts about the complex $[Cr(NH_3)_6]Cl_3$ is wrong ?
 - (1) The complex is an outer orbital complex
 - (2) The complex gives white precipitate with silver nitrate solution
 - (3) The complex involves d²sp³ hybridisation and is octahedral in shape
 - (4) The complex is paramagnetic

Ans. (1)

- **26.** The reduction potential of hydrogen half-cell will be negative if :-
 - (1) $p(H_2) = 2$ atm $[H^+] = 1.0$ M
 - (2) $p(H_2) = 2$ atm and $[H^+] = 2.0$ M
 - (3) $p(H_2) = 1$ atm and $[H^+] = 2.0$ M
 - (2) $p(H_2) = 1$ atm and $[H^+] = 1.0$ M

Ans. (1)

- 27. In content of the lanthanoids, which of the following statements is not correct ?
 - Because of similar properties the separation of langhanoids is not easy
 - (2) Availability of 4f electrons results in the formation of compounds in +4 state for all the members of the series
 - (3) There is a gradual decrease in the radii of the members with increasing atomic number in the series
 - (4) All the members exhibit +3 oxidation state

Ans. (2)

- **28.** Which of the following reagents may be used to distinguish between phenol and benzoic acid ?
 - (1) Molisch reagent
 - (2) Neutral FeCl₃
 - (3) Aqueous NaOH
 - (4) Tollen's reagent
- Ans. (2)
- **29.** Which of the following statements regarding sulphur is incorrect ?
 - At 600°C the gas mainly consists of S₂ molecules
 - (2) The oxidation state of sulphur is never less than +4 in its compounds
 - (3) S_2 molecule is paramagnetic
 - (4) The vapour at 200°C consists mostly of S₈ rings
- Ans. (2)
- 30. Which of the following statement is wrong ?
 - (1) Single N–N bond is weaker than the single P–P bond
 - (2) N_2O_4 has two resonance structures
 - (3) The stability of hydrides increases from NH₃ to BiH₃ in group 15 of the periodic table
 - (4) Nitrogen cannot form $d\pi$ -p π bond

Ans. (3)

PART B - MATHEMATICS

31. If
$$\vec{a} = \frac{1}{\sqrt{10}} (3\hat{i} + \hat{k})$$
 and $\vec{b} = \frac{1}{7} (2\hat{i} + 3\hat{j} - 6\hat{k})$, then

the value of $(2\vec{a} - \vec{b}) \cdot [(\vec{a} \times \vec{b}) \times (\vec{a} + 2\vec{b})]$ is :-

(1) 5 (2) 3

(3) - 5 (4) - 3

Ans. (3)

- 32. The coefficient of x^7 in the expansion of $(1 x x^2 + x^3)^6$ is :-
 - (1) 144(2) 132(3) 144(4) 132

Ans. (1)

- **33.** Let α , β be real and z be a complex number. If $z^2 + \alpha z + \beta = 0$ has two distinct roots on the line Re z = 1, then it is necessary that :-
 - (1) $|\beta| = 1$ (2) $\beta \in (1,\infty)$
 - (3) $\beta \in (0,1)$ (4) $\beta \in (-1,0)$

Ans. (2)

- 34. Consider the following statements
 - P: Suman is brilliant
 - Q : Suman is rich
 - R : Suman is honest

The negation of the statement "Suman is brilliant and dishonest if and only if Suman is rich" can be expressed as :-

(1) ~ Q \leftrightarrow ~ P
$$\land$$
 R
(2) ~ (P \land ~ R) \leftrightarrow Q
(3) ~ P \land (Q \leftrightarrow ~R)
(4) ~ (Q \leftrightarrow (P \land ~ R))

Ans. (2,4)

35.
$$\frac{d^{2}x}{dy^{2}} \text{ equals :-}$$
(1)
$$\left(\frac{d^{2}y}{dx^{2}}\right) \left(\frac{dy}{dx}\right)^{-2}$$
(2)
$$-\left(\frac{d^{2}y}{dx^{2}}\right) \left(\frac{dy}{dx}\right)^{-3}$$
(3)
$$\left(\frac{d^{2}y}{dx^{2}}\right)^{-1}$$
(4)
$$-\left(\frac{d^{2}y}{dx^{2}}\right)^{-1} \left(\frac{dy}{dx}\right)^{-2}$$

Ans. (2)

36. Statement-1:

The point A(1, 0, 7) is the mirror image of the point B(1, 6, 3) in the line : $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$

Statement-2:

The line : $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ bisects the line segment joining A (1, 0, 7) and B(1, 6, 3).

segment joining A(1, 0, 7) and D(1, 0, 5).

- (1) Statement-1 is true, Statement-2 is false.
- (2) Statement-1 is false, Statement-2 is true
- (3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is **not** a correct explanation for Statement-1.

Ans. (4)

37. If C and D are two events such that C ⊂ D and P(D) ≠ 0, then the correct statement among the following is :-

$$(1) P(C \mid D) < P(C)$$

(2)
$$P(C \mid D) = \frac{P(D)}{P(C)}$$

(3)
$$P(C|D) = P(C)$$

(4) $P(C|D) \ge P(C)$

D (CID)

Ans. (4)

CODE - S

- 38. Consider 5 independent Bernoulli's trials each with probability of success p. If the probability of at least one failure is greater than or equal
 - to $\frac{51}{32}$, then p lies in the interval :-

(1) $\left[0,\frac{1}{2}\right]$	$(2)\left(\frac{11}{12},1\right]$
$(3)\left(\frac{1}{2},\frac{3}{4}\right]$	$(4)\left(\frac{3}{4},\frac{11}{12}\right]$

Ans. (1)

- **39.** The value of $\int_{0}^{1} \frac{8\log(1+x)}{1+x^2} dx$ is :-
 - (2) log 2 (1) $\frac{\pi}{2}\log 2$ (4) $\frac{\pi}{2}\log 2$
- Ans. (3)

40. For
$$x \in \left(0, \frac{5\pi}{2}\right)$$
, define

(3) $\pi \log 2$

 $f(x) = \int_{0}^{x} \sqrt{t} \sin t \, dt$

Then f has :-

- (1) local minimum at π and local maximum at 2π
- (2) local maximum at π and local minimum at 2π
- (3) local maximum at π and 2π
- (4) local minimum at π and 2π

Ans. (2)

41. The vectors \vec{a} and \vec{b} are not perpendicular and \vec{c} and \vec{d} are two vectors satisfying $\vec{b} \times \vec{c} = \vec{b} \times \vec{d}$ and $\vec{a} \cdot \vec{d} = 0$. Then the vector \vec{d} is equal to :-(→ →)

(1)
$$\vec{b} + \left(\frac{\vec{b}\cdot\vec{c}}{\vec{a}\cdot\vec{b}}\right)\vec{c}$$
 (2) $\vec{c} - \left(\frac{\vec{a}\cdot\vec{c}}{\vec{a}\cdot\vec{b}}\right)\vec{b}$
(3) $\vec{b} - \left(\frac{\vec{b}\cdot\vec{c}}{\vec{a}\cdot\vec{b}}\right)\vec{c}$ (4) $\vec{c} + \left(\frac{\vec{a}\cdot\vec{c}}{\vec{a}\cdot\vec{b}}\right)\vec{b}$

Ans. (2)

Let R be the set of real numbers. Statement-1: A = { $(x, y) \in \mathbb{R} \times \mathbb{R} : y - x \text{ is an integer}$ } is an equivalence relation on R. Statement-2:

 $B = \{(x, y) \in R \times R : x = \alpha y \text{ for some rational} \}$

number α } is an equivalence relation on R.

- (1) Statement-1 is true, Statement-2 is false.
- (2) Statement-1 is false, Statement-2 is true
- (3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is **not** a correct explanation for Statement-1.

Ans. (1)

42.

43. Let A and B be two symmetric matrices of order 3. Statement-1:

> A(BA) and (AB)A are symmetric matrices. Statement-2:

AB is symmetric matrix if matrix multiplication of A with B is commutative.

- (1) Statement-1 is true, Statement-2 is false.
- (2) Statement-1 is false, Statement-2 is true
- (3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is **not** a correct explanation for Statement-1.

Ans. (4)

The two circles $x^2 + y^2 = ax$ and $x^2 + y^2 = c^2$ **44**. (c > 0) touch each other if :-(1) a = 2c (2) |a| = 2c (3) 2|a| = c (4) |a| = cAns. (4)

45.
$$\lim_{x \to 2} \left(\frac{\sqrt{1 - \cos\{2(x - 2)\}}}{x - 2} \right)$$

(1) equals $-\sqrt{2}$

(2) equals
$$\frac{1}{\sqrt{2}}$$

(3) does not exist (4) equals
$$\sqrt{2}$$

Ans. (3)
46. If
$$A = \sin^2 x + \cos^4 x$$
, then for all real x :-

(1) $1 \le A \le 2$ (2) $\frac{3}{4} \le A \le \frac{13}{16}$ (3) $\frac{3}{4} \le A \le 1$ (4) $\frac{13}{16} \le A \le 1$ Ans. (3)

The lines $L_1 : y - x = 0$ and $L_2 : 2x + y = 0$ 47. 51. A man saves Rs. 200 in each of the first three intersect the line L_3 : y + 2 = 0 at P and Q months of his service. In each of the subsequent respectively. The bisector of the acute angle between L_1 and L_2 intersects L_3 at R. months his saving increases by Rs. 40 more Statement - 1 : than the saving of immediately previous month. The ratio PR : RQ equals $2\sqrt{2}:\sqrt{5}$ His total saving from the start of service will Statement - 2 : be Rs. 11040 after :-In any triangle, bisector of an angle divides the triangle into two similar triangles. (1) 20 months (2) 21 months (1) Statement-1 is true, Statement-2 is false. (2) Statement-1 is false, Statement-2 is true (3) 18 months (4) 19 months (3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Ans. (2) Statement-1 If the mean deviation about the median of the 52. (4) Statement-1 is true, Statement-2 is true; numbers a, 2a, \dots , 50a is 50, then |a|Statement-2 is **not** a correct explanation for Statement-1. equals:-Ans. (1) (1) 4(2) 5 (3) 2 (4) 3 The domain of the function $f(x) = \frac{1}{\sqrt{|x| - x}}$ is:-48. Ans. (1) 53. If $\omega(\neq 1)$ is a cube root of unity, and $(1) (-\infty, 0)$ (2) $(-\infty, \infty) - \{0\}$ $(1 + \omega)^7 = A + B\omega$. Then (A, B) equals :- $(3) (-\infty, \infty)$ (4) $(0, \infty)$ (1) (1, 0)(2) (-1, 1)(3) (0, 1)(4) (1, 1)Ans. (1) Ans. (4) If the angle between the line $x = \frac{y-1}{2} = \frac{z-3}{2}$ 49. 54. The area of the region enclosed by the curves y = x, x = e, $y = \frac{1}{x}$ and the positive x-axis is:and the plane x + 2y + 3z = 4 is $\cos^{-1}\left(\sqrt{\frac{5}{14}}\right)$, (1) $\frac{3}{2}$ square units (2) $\frac{5}{2}$ square units then λ equals :-(1) $\frac{2}{5}$ (2) $\frac{5}{3}$ (3) $\frac{2}{3}$ (4) $\frac{3}{2}$ (3) $\frac{1}{2}$ square units (4) 1 square units Ans. (3) Ans. (1) 50. The shortest distance between line y - x = 1 and 55. The number of values of k for which the linear equations curve $x = y^2$ is :-4x + ky + 2z = 0kx + 4y + z = 0(1) $\frac{8}{3\sqrt{2}}$ (2) $\frac{4}{\sqrt{3}}$ (3) $\frac{\sqrt{3}}{4}$ (4) $\frac{3\sqrt{2}}{8}$ 2x + 2y + z = 0

possess a non-zero solution is :-

(2) zero

(3) 3

(4) 2

(1) 1

Ans. (4)

Ans. (4)

ſ

56. The values of p and q for which the function

$$f(x) = \begin{cases} \frac{\sin(p+1)x + \sin x}{x} , & x < 0\\ q , & x = 0\\ \frac{\sqrt{x+x^2} - \sqrt{x}}{x^{\frac{3}{2}}} , & x > 0 \end{cases}$$

is continuous for all x in R, are :-

(1)
$$p = -\frac{3}{2}, q = \frac{1}{2}$$

(2) $p = \frac{1}{2}, q = \frac{3}{2}$
(3) $p = \frac{1}{2}, q = -\frac{3}{2}$
(4) $p = \frac{5}{2}, q = \frac{1}{2}$

Ans. (1)

57. Statement - 1 :

The number of ways of distributing 10 identical balls in 4 distinct boxes such that no box is empty is ${}^{9}C_{3}$.

Statement - 2 :

The number of ways of choosing any 3 places from 9 different places is ${}^{9}C_{3}$.

- (1) Statement-1 is true, Statement-2 is false.
- (2) Statement-1 is false, Statement-2 is true
- (3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.

Ans. (3)

58. Equation of the ellipse whose axes are the axes of coordinates and which passes through the

point (-3, 1) and has eccentricity $\sqrt{2/5}$ is :-

0

(1)
$$3x^2 + 5y^2 - 15 =$$

(2) $5x^2 + 3y^2 - 32 = 0$ (3) $3x^2 + 5y^2 - 32 = 0$

$$(4) 5x^2 + 3y^2 - 48 = 0$$

Ans. (3)

59. Let I be the purchase value of an equipment and V(t) be the value after it has been used for t years. The value V(t) depreciates at a rate given

by differential equation $\frac{dV(t)}{dt} = -k(T - t)$,

where k > 0 is a constant and T is the total life in years of the equipment. Then the scrap value V(T) of the equipment is :-

(1) I -
$$\frac{k(T-t)^2}{2}$$
 (2) e^{-kT}

(3)
$$T^2 - \frac{I}{k}$$
 (4) $I - \frac{kT^2}{2}$

Ans. (4)

60. If $\frac{dy}{dx} = y + 3 > 0$ and y(0) = 2, then $y(\ln 2)$ is equal to :-

Ans. (3)

PART C - PHYSICS

61. A car is fitted with a convex side-view mirror of focal length 20 cm. A second car 2.8 m behind the first car is overtaking the first car at a relative speed of 15 m/s. The speed of the image of the second car as seen in the mirror of the first one is :(1) 10 m/s

(1) 10 m/s (2) 13 m/s
(3)
$$\frac{1}{10}$$
 m/s (4) $\frac{1}{15}$ m/s

62. The half life of a radioactive substance is 20 minutes. The approximate time interval $(t_2 - t_1)$

between the time t_2 when $\frac{2}{3}$ of it has decayed

and time t_1 when $\frac{1}{3}$ of it had decayed is :-

- (1) 20 min (2) 28 min (3) 7 min (4) 14 min
- Ans. (1)
- 63. A boat is moving due east in a region where the earth's magnetic field is $5.0 \times 10^{-5} \text{NA}^{-1} \text{m}^{-1}$ due north and horizontal. The boat carries a vertical aerial 2m long. If the speed of the boat is 1.50 ms⁻¹, the magnitude of the induced emf in the wire of aerial is :-

(1)	0.50 mV	(2)	0.15	mV
(3)	1 mV	(4)	0.75	mV

- Ans. (2)
- 64. The transverse displacement y(x, t) of a wave on a string is given by

 $y(x,t) = e^{-(ax^2+bt^2+2\sqrt{abxt})}$

This represents a :-

- (1) standing wave of frequency \sqrt{b}
- (2) standing wave of frequency $\frac{1}{\sqrt{h}}$

(3) wave moving in +x direction with speed $\sqrt{\frac{a}{b}}$

(4) wave moving in –x direction with speed $\sqrt{\frac{b}{a}}$

Ans. (4)

65. A water fountain on the ground sprinkles water all around it. If the speed of water coming out of the fountain is v, the total area around the fountain that gets wet is :-

(1)
$$\frac{\pi}{2} \frac{v^4}{g^2}$$
 (2) $\pi \frac{v^2}{g^2}$ (3) $\pi \frac{v^2}{g}$ (4) $\pi \frac{v^4}{g^2}$

Ans. (4)

66. Two particles are executing simple harmonic motion of the same amplitude A and frequency ω along the x-axis. Their mean position is separated by distance $X_0(X_0 > A)$. If the maximum separation between them is $(X_0 + A)$, the phase difference between their motion is :-

(1)
$$\frac{\pi}{4}$$
 (2) $\frac{\pi}{6}$ (3) $\frac{\pi}{2}$ (4) $\frac{\pi}{3}$

Ans. (4)

Statement-1 :

A metallic surface is irradiated by a monochromatic light of frequency $v > v_0$ (the threshold frequency). The maximum kinetic energy and the stopping potential are K_{max} and V_0 respectively. If the frequency incident on the surface is doubled, both the K_{max} and V_0 are also boubled.

Statement-2 :

The maximum kinetic energy and the stopping potential of photoelectrons emitted from a surface are linearly dependent on the frequency of incident light.

- (1) Statement-1 is true, Statement-2 is true, Statement-2 is not the correct explanation of Statement-1
- (2) Statement-1 is false, Statement-2 is true
- (3) Statement-1 is true, Statement-2 is false
- (3) Statement-1 is true, Statement-2 is true, Statement-2 is the correct explanation of Statement-1

Ans. (2)

- Let the x-z plane be the boundary between two **68**. transparent media. Medium 1 in $z \ge 0$ has a refractive index of $\sqrt{2}$ and medium 2 with z < 0 has a refractive index of $\sqrt{3}$. A ray of light in medium 1 given by the vector $\vec{A} = 6\sqrt{3\hat{i}} + 8\sqrt{3}\hat{j} - 10\hat{k}$ is incident on the plane of separation. The angle of refraction in medium 2 is :-(1) 60° (2) 75° $(3) 30^{\circ}$ $(4) 45^{\circ}$ Ans. (Bonus) A Carnot engine operating between 69. temperatures T_1 and T_2 has efficientcy $\frac{1}{6}$. When T_2 is lowered by 62 K, its efficiency increases to $\frac{1}{3}$. Then T₁ and T₂ are, respectively:-(1) 330 K and 268 K (2) 310 K and 248 K (3) 372 K and 310 K (4) 372 K and 330 K Ans. (3)
- 70. Energy required for the electron excitation in Li⁺⁺ from the first to the third Bohr orbit is :-(1) 108.8 eV (2) 122.4 eV (3) 12.1 eV (4) 36.3 eV

Ans. (1)

71. A resistor 'R' and 2µF capacitor in series is connected through a switch to 200 V direct supply. Across the capacitor is a neon bulb that lights up at 120 V. Calculate the value of R to make the bulb light up 5s after the switch has been closed. $(\log_{10} 2.5 = 0.4)$

(1) $2.7 \times 10^{6} \Omega$	(2) $3.3 \times 10^7 \Omega$
(3) $1.3 \times 10^4 \Omega$	(4) $1.7 \times 10^5 \Omega$
2 M S	

Ans. (1)

72. A thermally insulated vessel contains an ideal gas of molecular mass M and ratio of specific heats γ . It is moving with speed v and is suddenly broght to rest. Assuming no heat is lost to the surroundings, its temperature increases by :-

(1)
$$\frac{\gamma M v^2}{2R} K$$
 (2) $\frac{(\gamma - 1)}{2R} M v^2 K$
(3) $\frac{(\gamma - 1)}{2(\gamma + 1)R} M v^2 K$ (4) $\frac{(\gamma - 1)}{2\gamma R} M v^2 K$

Ans. (2)

- Work done in increasing the size of a soap 73. bubble from a radius of 3 cm to 5cm is nearly (Surface tension of soap solution $= 0.03 \text{ Nm}^{-1}$) :-
 - (2) 0.4 π mJ (1) $2\pi \, \text{mJ}$
 - (3) $4\pi \, \text{mJ}$ (4) 0.2 π mJ

Ans. (2)

74. A fully charged capacitor C with initial charge q_0 is connected to a coil of self inductance L at t = 0. The time at which the energy is stored equally between the electric and the magnetic fields is :-

1)
$$2\pi\sqrt{\text{LC}}$$
 (2) $\sqrt{\text{LC}}$

(3)
$$\pi\sqrt{LC}$$

Ans. (4)

75. Direction :

> The question has a paragraph followed by two statement, Statement-1 and statement-2. Of the given four alternatives after the statements, choose the one that describes the statements. A thin air film is formed by putting the convex surface of a plane-convex lens over a plane glass plate. With monochromatic light, this film gives an interference pattern due to light reflected from the top (convex) surface and the bottom (glass plate) surface of the film

(4) $\frac{\pi}{4}\sqrt{\text{LC}}$

Statement-1:

When light reflects from the air-glass plate interface, the reflected wave suffers a phase change of π .

Statement-2:

The centre of the interference pattern is dark :-

- (1) Statement-1 is true, Statement-2 is true and Statement-2 is not the correct explanation of Statement-1.
- (2) Statement-1 is false, Statement-2 is true
- (3) Statement-1 is true, Statement-2 is false
- (4) Statement-1 is true, Statement-2 is true and Statement-2 is the correct explanation of statement-1.

9/11

CODE - S

76. A screw gauge gives the following reading when used to measure the diameter of a wire. Main scale reading : 0 mm.

Circular scale reading : 52 divisions

Given that 1 mm on main scale corresponds to 100 divisions of the circular scale.

The diameter of wire from the above date is :-

- (1) 0.026 cm (2) 0.005 cm
- (3) 0.52 cm (4) 0.052 cm

Ans. (4)

77. Three perfect gases at absolute temperatures T_1 , T_2 and T_3 are mixed. The masses of molecules are m_1 , m_2 , and m_3 and the number of molecules are n_1 , n_2 and n_3 respectively. Assuming no loss of energy, then final temperature of the mixture is :-

(1)
$$\frac{n_1T_1^2 + n_2T_2^2 + n_3T_3^2}{n_1T_1 + n_2T_2 + n_3T_3}$$

(2)
$$\frac{n_1^2 T_1^2 + n_2^2 T_2^2 + n_3^2 T_3^2}{n_1 T_1 + n_2 T_2 + n_3 T_3}$$

(3)
$$\frac{T_1 + T_2 + T_3}{3}$$

(4)
$$\frac{n_1T_1 + n_2T_2 + n_3T_3}{n_1 + n_2 + n_3}$$

Ans. (4)

78. The electrostatic potential inside a charged spherical ball is given by $\phi = ar^2 + b$ where r is the distance from the centre; a, b are constant. Then the charge density inside the ball is :-

(1) $-24\pi \ a \in_0$ (2) $-6 \ a \in_0$ (3) $-24\pi \ a \in_0 r$ (4) $-6 \ a \in_0 r$

Ans. (2)

10/11

79. This question has Statement-1 and Statement-2. Of the four choices given after the statements, choose the one that best describes the two statements.

Statement-1:

Sky wave signals are used for long distance radio communication. These signals are in general, less stable than ground wave signals. **Statement-2**:

The state of ionosphere varies from hour to hour, day to day and season to season.

- (1) Statement-1 is true, Statement-2 is true and Statement-2 is not the correct explanation of Statement-1.
- (2) Statement-1 is false, Statement-2 is true
- (3) Statement-1 is true, Statement-2 is false
- (4) Statement-1 is true, Statement-2 is true and Statement-2 is the correct explanation of statement-1.

Ans. (4)

80. A mass m hangs with the help of a string wrapped around a pulley on a firctionless bearing. The pulley has mass m and radius R. Assuming pulley to be a perfect uniform circular disc, the acceleration of the mass m, if the string does not slip on the pulley, is :-

(1)
$$\frac{2}{3}g$$
 (2) $\frac{g}{3}$ (3) $\frac{3}{2}g$ (4) g

Ans. (1)

81. A current I flows in an infinity long wire with cross section in the from of a semicircular ring of radius R. the magnitude of the magnetic induction along its axis is :-

(1)
$$\frac{\mu_0 I}{2\pi R}$$
 (2) $\frac{\mu_0 I}{4\pi R}$ (3) $\frac{\mu_0 I}{\pi^2 R}$ (4) $\frac{\mu_0 I}{2\pi^2 R}$

Ans. (3)

82. If a wire is stretched to make it 0.1 % longer its resistance will :-

(1) decrease by 0.2%

(2) decrease by 0.05%

(3) increase by 0.05%

(4) increase by 0.2%

Ans. (4)

- A thin horizontal circular disc is rotating about 83. a vertical axis passing through its centre. An insect is at rest at a point near the rim of the disc. The insect now moves along a diameter of the disc to reach its other end. Euring the fjourney of the insect, then angular speed of the disc :-
 - (1) continuously increases
 - (2) first increases and then decreases
 - (3) remains unchanged
 - (4) continuously decreses
- Ans. (2)
- 84. 100 g of water is heated from 30°C to 50°C Ignoring the slight expansion of the water, the change in its internal energy is (specific heat of water is 4184 J/kg/K) :-

(1) 84 kJ (2)
$$2.1$$
 kJ

Ans. (4)

85. An object, moving with a speed of 6.25 m/s, is decelerated at a rate given by

$$\frac{\mathrm{dv}}{\mathrm{dt}} = -2.5\,\sqrt{\mathrm{v}}$$

where v is the instantaneous speed. The time taken by the object, to come to rest, would be :-

(1) 4 s	(2) 8 s
(3) 1 s	(4) 2 s

Ans. (4)

- 86. Water is flowing continuously from a tap having an internal diameter 8×10^{-3} m. The water velocity as it leaves the tap is 0.4 ms⁻¹. The diameter of the water stream at a distance 2×10^{-1} m below the tap is close to :-
 - (2) $3.6 \times 10^{-3} \text{ m}$ (1) $9.6 \times 10^{-3} \text{ m}$

(3)
$$5.0 \times 10^{-3}$$
 m (4) 7.5×10^{-3} m

Ans. (2)

87. Two identical charged spheres suspended from a common point by two massless string of length ℓ are initially a distance d(d << ℓ) apart because of their mutual repulsion. The charge begins to leak from both the spheres at a constant rate. As a result the charges approach each other with a velocity v. Then as a function of distance x between them :-

х

(1)
$$v \propto x^{1/2}$$
 (2) $v \propto x$
(3) $v \propto x^{-1/2}$ (4) $v \propto x^{-1}$

Ans. (3)

88. A mass M, attached to a horizontal spring, executes S.H.M. with amplitude A_1 . When the mass M passes through its mean position then a smaller mass m is placed over it and both of them move together with amplitude A_2 . The

CODE - S

ratio of
$$\left(\frac{A_1}{A_2}\right)$$
 is :-

(1)
$$\left(\frac{M}{M+m}\right)^{1/2}$$
 (2) $\left(\frac{M+m}{M}\right)^{1/2}$

(3)
$$\frac{M}{M+m}$$
 (4) $\frac{M+m}{M}$

Ans. (2)

89. Two bodies of masses m and 4m are placed at a distance r. The gravitational potential at a point on the line joining them where the gravitational field is zero is :-

 $(4) - \frac{4Gm}{r}$

$$(1) - \frac{6Gm}{r} \qquad (2) - \frac{9Gm}{r}$$

Ans. (2)

- 90. A pulley of radius 2 m is rotated about its axis by a force $F = (20t - 5t^2)$ newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m², the number of rotations made by the pulley before its direction of motion it reversed, is :-
 - (1) more than 6 but less than 9
 - (2) more than 9
 - (3) less than 3
 - (4) more than 3 but less than 6

Ans. (4)

