AIPMT 2011 ANALYSIS

We hope you have done in AIPMT conducted on 3rd April, 2011.
There were four versions of the Question papers, A, B, C \& D. In different versions the orders of the subjects were also different. The order of the answer choices were also jumbled in different versions. The answer key for all the four versions are given here. In addition to this, detailed solution of version D is also included.

KEY AND SOLUTION FOR AIPMT -PRELIMS-2011

Solutions for Version -D

NOTE:

The terms "Easy (E)", "Medium: (M)", and "Difficult: (D)" are based on the following points
EASY (E):-
Easy Questions are defined as those questions that can be answered by a student who knows the concept under question. It is a direct application of the concept. A student is expected to have attempted all the EASY Category Questions.

MEDIUM (M):-

Medium Difficulty Questions are those questions that may involve more than one concept. A wellprepared student should be able to identify at least 75% of these and solve them correctly.

DIFFICULT (D):-

Difficult Questions are those questions which definitely involve multiple concepts and are tricky. The students may be led to think away from the ideal method of problem solving. It will require good effort even from the well prepared student to identify the Difficult ones and categorize them accordingly.

$\begin{aligned} & \hline \text { Code } \\ & \text { A } \\ & \hline \end{aligned}$	KEY	Code B	KEY	Code C	KEY	Code D	KEY
1	4	1	2	01	2	1	4
2	3	2	2	2	3	2	3
3	3	3	3	- 3	4	3	1
4	4	4	2	4	4	4	3
5	3	5	1	5	4	5	2
6	2	6	4	6	2	6	1
7	1	7	2	7	3	7	3
8	4	8	2	8	2	8	4
9	3	9	3	9	4	9	2
10	3	10	4	10	2	10	4
11	3	11	2	11	2	11	2
12	1	12	3	12	2	12	2
13	2	13	1	13	3	13	2
14	1	14	3	14	3	14	1
15	4	15	3	15	4	15	2

16	4	16	2	16	3	16	2
17	1	17	2	17	3	17	1
18	4	18	1	18	1	18	1
19	3	19	4	19	4	19	4
20	3	20	2	20	4	20	4
21	3	21	3	21	3	21	3
22	4	22	2	22	1	22	1
23	2	23	2	23	4	23	2
24	2	24	2	24	1	24	1
25	3	25	1	25	4	25	2
26	2	26	2	26	3	26	2
27	1	27	3	27	3	27	4
28	3	28	1	28	2	28	3
29	1	29	2	29	4	29	3
30	1	30	1	30	4	30	1
31	2	31 -	2	31	2	31	3
32	2	32	2	32	2	32	1
33	4	33	1	33	2 \& 4	33	1
34	4	34	2	34	3	34	2
35	2	35	4	35	3	35	2
36	1	36	3	36	2	36	3
37	3	37	3	37	4	37	2
38	4	38	1	-38	-1	38	3
39	4	39	3	39	2	39	1
40	3	40	1	40	4	40	1
41	3	41	3	41	4	41	3
42	2	42	4	- 42	4	42	4
43	3	43	1	43	1	43	4
44	1		4	44	2	44	1
45	4	45	3	45	1	45	3
46	4	46	2	46	2	46	1
47	2	47	3	47	4	47	4
48	4	48	2	48	1	48	4
49	1	49	1	49	4	49	2
50	1	50	1	50	3	50	1
51	3	51	4	51	3	51	3
52	3	52	3	52	2	52	3
53	3	53	2	53	4	53	3
54	1	54	2	54	2	54	1

55	3	55	2	55	1	55	3
56	3	56	3	56	4	56	1
57	4	57	1	57	2	57	1
58	4	58	4	58	4	58	3
59	1	59	4	59	3	59	3
60	1	60	2	60	1	60	4
61	4	61	2	61	1	61	3
62	3	62	2 \& 4	62	2	62	2
63	2	63	1	63	4	63	3
64	1	64	4	64	2	64	3
65	3	65	3	65	3	65	2
66	3	66	2	66	4	66	2
67	4	67	4	67	2	67	1
68	1	68	4	68	2	68	1
69	4	69	2	69	1	69	3
70	2	70	1	70	2	70	1
71	4	71	2	71	3	71	3
72	3	72	1	72	+	72	4
73	2	73	4	73	-3	73	1
74	2	74	3	74	4	74	3
75	4	75	4	75	1	75	3
76	2	76	2	76	+2	- 76	4
77	3	77	2	77	+ 3	77	1
78	4	78	4	78	2	78	1
79	3	79	4	79	02	79	4
80	2	80	2	80	4	80	2
81	4	81	2	-81	1	81	1
82	4	82	+4	82	2	82	2
83	2	83	- 4	83	4	83	3
84	3	84	3	84	1	84	4
85	2	85	3	85	2	85	1
86	1	86	3	86	4	86	1
87	2	87	4	87	3	87	1
88	2	88	1	88	3	88	4
89	4	89	4	89	4	89	3
90	3	90	2	90	4	90	4
91	3	91	1	91	3	91	1
92	4	92	3	92	2	92	1
93	3	93	1	93	2	93	1
94	3	94	1	94	2	94	1

95	2	95	4	95	3	95	1
96	2	96	3	96	1	96	1
97	3	97	4	97	1	97	4
98	3	98	4	98	4	98	3
99	4	99	2	99	2	99	4
100	3	100	1	100	4	100	4
101	1	101	2	101	3	101	3
102	3	102	2	102	1	102	2
103	3	103	2	103	4	103	1
104	2	104	4	104	1	104	3
105	1	105	3	105	1	105	4
106	1	106	2	106	4	106	3
107	3	107	2	107	4	107	3
108	1	108	1	108	2	108	1
109	4	109	2	109	3	109	1
110	1	110	2	110	3	110	3
111	3	111	3	111	4	111	2
112	1	112	1	112	2	112	1 \& 3
113	1	113	1	113	4	113	4
114	3	114	4	114	3	114	2
115	2	115	4	115	2	115	2
116	1	116	4	116	1	116	2
117	1 \& 3	117	2	-117	4	117	2
118	2	118	2	118	3	118	1
119	3	119	1	119	2	119	1
120	1	120	4	120	1	120	1
121	2	121	4	121	3	121	1
122	4	122	3	122	4	122	4
123	3	123	3	123	4	123	3
124	3	124	4	124	4	124	3
125	2	125	1	125	4	125	2
126	4	126	2	126	2	126	1
127	3	127	4	127	4	127	4
128	2	128	2	128	4	128	3
129	4	129	1	129	1	129	3
130	3	130	1	130	1	130	3
131	4	131	4	131	1	131	1
132	1	132	1	132	4	132	3
133	2	133	4	133	2	133	2

134	4	134	1	134	1	134	1
135	3	135	2	135	3	135	3
136	3	136	4	136	2	136	4
137	4	137	3	137	2	137	3
138	1	138	2	138	1	138	4
139	1	139	1	139	1	139	2
140	3	140	1	140	2	140	1
141	2	141	1	141	3	141	4
142	3	142	1	142	2	142	4
143	2	143	2	143	1	143	2
144	1	144	4	144	2	144	1
145	1	145	2	145	3	145	3
146	1	146	3	146	4	146	4
147	3	147	2	147	1	147	4
148	3	148	2	148	1	148	4
149	2	149	3	149	4	149	4
150	3	150	2	150	3	150	1
151	3	151	4	151	4	151	2
152	2	+152	2	152	3	152	1
153	3	153	4	153	3	153	1
154	4	154	2	154	1	154	4
155	1	155	1	155	4	155	1
156	3	156	4	156	1	156	3
157	3	157	2	157	4	157	1
158	1	158	2	158	4	158	4
159	1	159	3	+159	2	159	4
160	1	160	+ 3	160	4	160	2
161	3	161	2	161	1	161	2
162	4	162	-1	162	4	162	2
163	4	163	4	163	3	163	3
164	3	164	1	164	1	164	1
165	1	165	1	165	4	165	1
166	4	166	2	166	3	166	1
167	2	167	2	167	1	167	1
168	3	168	3	168	3	168	3
169	3	169	4	169	2	169	3
170	2	170	2	170	4	170	4
171	1	171	4	171	1	171	2
172	3	172	3	172	4	172	4

$\mathbf{1 7 3}$	$\mathbf{1}$	173	$\mathbf{2}$	173	$\mathbf{4}$	173	$\mathbf{1}$
174	$\mathbf{1}$	174	$\mathbf{3}$	174	$\mathbf{3}$	174	$\mathbf{1}$
175	$\mathbf{1}$	175	$\mathbf{2}$	175	$\mathbf{4}$	175	$\mathbf{2}$
176	$\mathbf{2}$	176	$\mathbf{1}$	176	$\mathbf{3}$	176	$\mathbf{2}$
177	$\mathbf{2}$	177	$\mathbf{4}$	177	$\mathbf{4}$	177	$\mathbf{4}$
178	$\mathbf{2}$	178	$\mathbf{1}$	178	$\mathbf{4}$	178	$\mathbf{4}$
179	$\mathbf{3}$	179	$\mathbf{3}$	179	$\mathbf{2}$	179	$\mathbf{2}$
180	$\mathbf{1}$	180	$\mathbf{4}$	180	$\mathbf{1}$	180	$\mathbf{2}$
181	$\mathbf{2}$	181	$\mathbf{4}$	181	$\mathbf{1}$	181	$\mathbf{1}$
182	$\mathbf{3}$	182	$\mathbf{2}$	182	$\mathbf{3}$	182	$\mathbf{2}$
183	$\mathbf{2}$	183	$\mathbf{1}$	183	$\mathbf{1}$	183	$\mathbf{1}$
184	$\mathbf{1}$	184	$\mathbf{3}$	184	$\mathbf{3}$	184	$\mathbf{2}$
185	$\mathbf{3}$	185	$\mathbf{3}$	185	$\mathbf{4}$	185	$\mathbf{2}$
186	$\mathbf{3}$	186	$\mathbf{1}$	186	$\mathbf{2}$	186	$\mathbf{1}$
187	$\mathbf{4}$	187	$\mathbf{1}$	187	$\mathbf{4}$	187	$\mathbf{1}$
188	$\mathbf{4}$	188	$\mathbf{3}$	188	$\mathbf{3}$	188	$\mathbf{3}$
189	$\mathbf{4}$	189	$\mathbf{4}$	189	$\mathbf{2}$	189	$\mathbf{1}$
190	$\mathbf{2}$	190	$\mathbf{2}$	190	$\mathbf{3}$	190	$\mathbf{4}$
191	$\mathbf{3}$	191	$\mathbf{3}$	191	$\mathbf{1}$	191	$\mathbf{1}$
192	$\mathbf{1}$	192	$\mathbf{2}$	192	$\mathbf{4}$	192	$\mathbf{3}$
193	$\mathbf{2}$	193	$\mathbf{3}$	193	$\mathbf{1}$	193	$\mathbf{4}$
194	$\mathbf{2}$	194	$\mathbf{2}$	194	$\mathbf{4}$	194	$\mathbf{2}$
195	$\mathbf{2}$	195	$\mathbf{3}$	195	$\mathbf{4}$	195	$\mathbf{1}$
196	$\mathbf{4}$	196	$\mathbf{3}$	196	$\mathbf{1}$	196	$\mathbf{4}$
197	$\mathbf{1}$	197	$\mathbf{2}$	197	$\mathbf{2}$	197	$\mathbf{4}$
198	$\mathbf{1}$	198	$\mathbf{4}$	198	$\mathbf{3}$	198	$\mathbf{1}$
199	$\mathbf{4}$	199	$\mathbf{1}$	199	$\mathbf{1}$	199	$\mathbf{4}$
200	$\mathbf{1}$	200	$\mathbf{3}$	200	$\mathbf{4}$	200	$\mathbf{1}$

SI. No.	Key	Solution	Chapter Name	Difficulty Level			Remarks
				E	M	D	
1	4	$\begin{aligned} & \frac{1}{2} m v^{2}=e V \\ & v \propto \sqrt{V} \end{aligned}$	Modern Physics		\checkmark		
2	3	Basic knowledge and definition	Electronics	\checkmark			
3	1	$\mathrm{p}=\frac{\mathrm{h} v}{\mathrm{c}}$	Modern Physics		\checkmark		

		$\begin{aligned} K E & =\frac{p^{2}}{2 M} \\ & =\frac{h^{2} v^{2}}{2 M c^{2}} \end{aligned}$					
4	3	$\begin{aligned} & \mathrm{a}=r \omega^{2} \\ &=\frac{4 \pi^{2} \mathrm{r}}{\mathrm{~T}^{2}} \\ & \mathrm{r}=0.05 \mathrm{~m} \\ & \mathrm{~T}=0.2 \pi \mathrm{~s} \\ & \Rightarrow \mathrm{a}=5 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	Dynamics Circular Motion		\checkmark		
5	2	$\begin{aligned} & \begin{array}{l} \text { Assume } P=1000 \mathrm{~W} \\ \text { (Instead of } 1000 \mathrm{~kW} \text {) } \\ \text { Energy } / \text { hour }=1000 \times 3600 \mathrm{~J} \\ \text { Energy } / \text { fission }=200 \mathrm{MeV} \\ =200 \times 1.6 \times 10^{-13} \mathrm{~J} \end{array} \\ & \begin{array}{r} \therefore \mathrm{n}= \\ \quad=\frac{1000 \times 3600}{200 \times 1.6 \times 10^{-13}} \end{array} \\ & \text { No. of mole } / \text { hour }=\frac{\mathrm{n}}{\mathrm{~N}} \end{aligned} \quad \begin{array}{r} \therefore \text { Mass } / \text { hour }=\frac{\mathrm{n}}{\mathrm{~N}} \times 235 \mathrm{gram} \\ \quad=\frac{1000 \times 3600 \times 235}{200 \times 1.6 \times 10^{-13} \times 6.02 \times 10^{23}} \quad=43.9 \times 10^{-6} \mathrm{~g} \cong 40 \mathrm{gg} \end{array}$	Modern Physics			\checkmark	If we take $\mathrm{P}=$ 1000 kW, no answer is correct.
6	1	$\begin{aligned} & \frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{t / T_{1 / 2}} \\ & \Rightarrow \frac{1}{16}=\left(\frac{1}{2}\right)^{\frac{t}{50}} \\ & \Rightarrow t=200 \text { years } \end{aligned}$	Modern Physics		V		
7	3	$\begin{aligned} \mathrm{U} & =\text { Energy density } \times \text { volume } \\ & =\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2} \mathrm{Ad} \end{aligned}$	Electrostatics and Capacitors	\checkmark			
8	4	$\begin{aligned} & \theta=2 \mathrm{t}^{3}-6 \mathrm{t}^{2} \\ & \alpha=\frac{\mathrm{d}^{2} \theta}{\mathrm{dt}^{2}}=12 \mathrm{t}-12 \end{aligned}$ Where $\alpha=0, \tau=0$ $\Rightarrow t=1 \mathrm{~s}$	Rotational dynamics		\checkmark		
9	2	$\begin{aligned} & \mathrm{i}_{9}=\sqrt{\frac{P}{R}}=\sqrt{\frac{36}{9}}=2 \mathrm{~A} \\ & \mathrm{i}_{6}=\frac{\mathrm{i}_{9} \mathrm{R}}{6}=\frac{2 \times 9}{6}=3 \mathrm{~A} \\ & \mathrm{I}=\mathrm{i}_{9}+\mathrm{i}_{6}=2+3=5 \mathrm{~A} \\ & \mathrm{~V}_{2}=\mathrm{I} . \mathrm{R}_{2}=5 \times 2=10 \mathrm{~V} \end{aligned}$	Current Electricity		\checkmark		
10	4	$\begin{aligned} & \phi_{1}=(\omega \mathrm{t}+\mathrm{kx}+0.57) \\ & \phi_{2}=\left(\frac{\pi}{2}+\omega \mathrm{t}+\mathrm{kx}\right) \\ & \phi=\phi_{2}-\phi_{1}=1 \mathrm{rad} \end{aligned}$	Waves		\checkmark		
11	2	$\begin{aligned} & \mathrm{KE}_{\max }=\mathrm{eV} \\ & \Rightarrow \begin{aligned} \Rightarrow & =\frac{\mathrm{KE} \mathrm{E}_{\max }}{\mathrm{e}} \\ & =0.5 \mathrm{volt} \end{aligned} \end{aligned}$	Modern Physics		\checkmark		
12	2	$\mathrm{T}=(\mathrm{M}+\mathrm{m})(\mathrm{g}+\mathrm{a})$	Laws of motion		\checkmark		

		$\begin{aligned} & =(940+60)(10+1) \\ & =11,000 \mathrm{~N} \end{aligned}$					
13	2	$y=1+\omega t+\omega^{2} t^{2}$ is not periodic. $y=\sin ^{3} \omega t$ is periodic but not SHM.	Oscillations		\checkmark		
14	1	$\begin{aligned} \mathrm{I}_{\text {AA }} & =\mathrm{I}_{\mathrm{CM}}+\mathrm{M} \lambda^{2} \\ & =\mathrm{I}_{0}+\mathrm{M}\left(\frac{\mathrm{~L}}{2}\right)^{2} \\ & =\mathrm{I}_{0}+\frac{\mathrm{ML}^{2}}{4} \end{aligned}$	Rotational dynamics		\checkmark		
15	2	Antimony is pentavalent \Rightarrow N-type semiconductor \Rightarrow excess free electrons	Electronics and Semiconductors	\checkmark			
16	2	$\begin{aligned} \frac{v_{1}}{v_{2}} & =\frac{\lambda_{1} f_{1}}{\lambda_{2} f_{2}} ; \text { But }\left(f_{1}=f_{2}\right) \\ \Rightarrow \lambda_{2} & =\lambda_{1} \frac{v_{2}}{v_{1}} \\ \Rightarrow \lambda_{2} & =\lambda_{1} \times 10 \\ & =10 \lambda_{1} \end{aligned}$	Waves		\checkmark		
17	1	$\begin{aligned} \mathrm{KE}_{\max } & =\mathrm{hv}-\mathrm{hv}_{0} \\ & =\frac{1}{2} m v^{2} \\ \Rightarrow \frac{\mathrm{v}_{1}{ }^{2}}{\mathrm{v}_{2}{ }^{2}} & =\frac{(1-0.5)}{(2.5-0.5)}=\frac{1}{4} \\ \Rightarrow \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}} & =\sqrt{\frac{1}{4}}=\frac{1}{2} \end{aligned}$	Modern Physics		\checkmark		
18	1	$\begin{aligned} & 2[r+2]=0.5[r+9] \\ & 1.5 r=0.5 \\ & r=\frac{1}{3} \Omega \end{aligned}$	Current Electricity	\checkmark			
19	4	$\begin{aligned} & \overline{\mathrm{E}} \perp \overline{\mathrm{~B}} \perp \overline{\mathrm{c}} \\ & (\hat{\mathrm{i}} \times \hat{\mathrm{j}}=\hat{\mathrm{k}}) \end{aligned}$ (Poynting vector is in the direction of $(\overline{\mathrm{E}} \times \overline{\mathrm{B}}))$	EM Waves		$\begin{gathered} 4 \\ V \end{gathered}$		
20	4	Potential $\mathrm{V}(\mathrm{x})$ vs x is parabolic \Rightarrow SHM, starting from extreme position $\Rightarrow \mathrm{x}$ vs t cosine curve	SHM			\checkmark	Question need to be rephrased as "A particle of mass m is released from rest and its potential $\mathrm{V}(\mathrm{x})$ at position x is parabolic as shown in figure".
21	3	$\begin{aligned} \Delta S & =\frac{\Delta Q}{T} \\ & =\frac{\mathrm{m} \cdot \mathrm{~L}}{273 \mathrm{~K}}=\frac{1000 \times 80 \mathrm{cal}}{273} \\ & =293 \mathrm{cal} \mathrm{~K}^{-1} \end{aligned}$	Heat \& Thermodynami cs		\checkmark		
22	1	$\begin{aligned} & \mathrm{mvr}=\mathrm{L} \text { is conserved } \\ & \Rightarrow \mathrm{v}_{1} r_{1}=\mathrm{v}_{2} r_{2} \end{aligned}$	Gravitation	\checkmark			

		$\frac{v_{1}}{v_{2}}=\frac{r_{2}}{r_{1}}$					
23	2	$\phi=\frac{q}{\varepsilon_{0}}$ remains same.	Electrostatics	\checkmark			
24	1	$\frac{\mathrm{dE}}{\mathrm{d} \theta}=0$ at neutral temperature	Thermoelectric ity	\checkmark			
25	2	Basic knowledge	Modern Physics	\checkmark			
26	2	$\begin{aligned} & m \rightarrow(m-4) \\ & n \rightarrow n-2+(2 \times 1) \\ &=n \\ & \Rightarrow(m-4) \\ & n \end{aligned}$	Modern Physics		\checkmark		
27	4	Feeble attraction \rightarrow paramagnetic Feeble repulsion \rightarrow diamagnetic Strong attraction \rightarrow ferromagnetic	Magnetism	\checkmark			
28	3	$\begin{aligned} & W=-150 \mathrm{~J} \\ & \therefore Q=+150 \mathrm{~J} \end{aligned}$ (See remark)	Heat \& Thermodynami cs		$\sqrt{ }$		In Physics, an expanding gas does positive work. Hence question is not correct. However, if we take work done by expanding gas as negative (followed in some conventions) then this answer is correct)
29	3	Minimum frequency needed for photoelectric emission	Modern Physics	\checkmark			
30	1	$\begin{aligned} \lambda & =\frac{12.27}{\sqrt{V}} \AA \\ \lambda_{2} & =\lambda_{1} \sqrt{\frac{V_{1}}{V_{2}}} \\ & =\lambda_{1} \sqrt{\frac{25}{100}}=\frac{\lambda_{1}}{2} \end{aligned}$	Modern Physics		\checkmark		λ_{2} becomes half of λ_{1}. The usage 'decreases by 2 times' is not correct.
31	3	$\begin{aligned} \mathrm{E}_{\mathrm{rms}} & =200 \mathrm{~V} \\ \mathrm{X}_{\mathrm{C}} & =\frac{1}{1 \times 10^{-6} \times 100}=10^{4} \Omega \\ \mathrm{I}_{\mathrm{rms}} & =\frac{\mathrm{E}_{\mathrm{rms}}}{\mathrm{X}_{\mathrm{C}}}=\frac{200}{10^{4}} \\ & =2 \times 10^{-2} \mathrm{~A}=20 \mathrm{~mA} \end{aligned}$			\checkmark		
32	1	$\begin{aligned} v & =\sqrt{2 \mathrm{gh}} \\ & =\sqrt{2 \times 10 \times 20} \\ & =20 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	Kinematics	\checkmark			
33	1	$P=\bar{F} \cdot \bar{v}$ $\overline{\mathrm{V}} \& \overline{\mathrm{~F}}$ are maximum near the surface of Earth $\overline{\mathrm{V}}$ and $\overline{\mathrm{F}}$ in same direction, when stone hits the Earth.	Work Power Energy	\checkmark			

49	2	$\begin{aligned} \|\bar{J}\| & =\|\bar{\Delta} \mathrm{p}\| \\ & =2 \mathrm{MV} \end{aligned}$	Work, Power, Energy	\checkmark			
50	1	$\begin{aligned} & \overline{\mathrm{F}}_{\mathrm{e}}=-\mathrm{e} \overline{\mathrm{E}} \\ & \Rightarrow \text { Speed decreases } \end{aligned}$	Electromagneti sm	\checkmark			
51	3	It is the palindromic sequence preferred by EcoRI	Biotechnology		\checkmark		
52	3	Gametophyte of a pteridophyte is also known as prothallus	Plant Kingdom		\checkmark		
53	3	Flower is shoot modification of shoot	Morphology of Flowering Plants		\checkmark		
54	1	Arteries are the blood vessels that carry blood away from the heart. Pulmonary arteries are not always carrying oxygenated blood.	Body fluids and Circulation	\checkmark			
55	3	In EcoRI 'co' stands for species name from which the enzyme is isolated.	Biotechnology	\checkmark			
56	1	' a ' and ' c ' are the adaptations of desert lizards.	Organisms and Populations		\checkmark		
57	1	Jaya and Ratna are the semi dwarf varieties of rice developed in India.	Strategies for Enhancement in Food Production	\checkmark			
58	3	Agarose is used in Agarose gel electrophoresis.	Biotechnology	\checkmark			
59	3	Lecithin is a phospholipid in plasma membrane. Adenine is a nitrogen base not a nucleotide. Uracil is not a component of DNA.	Biomolecules			\checkmark	
60	4	ELISA is used for the diagnosis of AIDS.	Human Health and Disease				
61	3	Secondary succession occurs in an already inhabited but abandoned areas.	Ecosystem		$1+\sqrt{2}$		
62	2	It directs the male gamete towards the egg.	Sexual Reproduction in Flowering Plants		\checkmark		
63	3	Green house gases are $\mathrm{CO}_{2}(60 \%)$ Methane (20\%) CFC (14\%) $\mathrm{N}_{2} \mathrm{O}$ (6\%).	Environmental Issues		\checkmark		
64	3	IUCN - is International Union for Conservation of Nature and Natural Resources.	Biodiversity		\checkmark		
65	2	Nucleosome appears like beads on a string structure.	$\begin{aligned} & \text { Molecular } \\ & \text { Basis of } \\ & \text { Inheritance } \\ & \hline \end{aligned}$		\checkmark		
66	2	Pyramid of energy is always upright.	Ecosystem	\checkmark			
67	1	Option 1 is correctly matched.	Chemical Coordination and Integration			\checkmark	
68	1	Up to first trimester (12 weeks) is safe for MTP.	Reproductive Health		\checkmark		
69	3	Pinus is a gymnosperm.	Plant Kingdom		\checkmark		
70	1	Insects are the most abundant species in the biosphere.	Biodiversity	\checkmark			
71	3	Pressure above 140/90 harm vital organs like brain and kidney.	Body Fluids and Circulation			\checkmark	
72	4	Option '4' is correctly matched.	Chemical Co-			\checkmark	

			ordination and Integration				
73	1	Typhlosole extends from 26 to $95^{\text {th }}$ segment in Pheretima.	Structural Organisation in Animals		\checkmark		
74	3	Eyes of potato are axillary buds.	Morphology of Flowering Plants		\checkmark		
75	3	Archaebacteria like methanogens acts on sewage and produce marsh gas (Methane).	Microbes in Human Welfare		\checkmark		
76	4	Cough while eating is due to improper movement of epiglottis.	Digestion and Absorption			\checkmark	
77	1	Alveoli acts as main site of exchange of gases.	Breathing and Exchange of Gases			\checkmark	
78	1	Retetestis and vasa efferentia are the ducts inside the testis and epidydims, vasdeferens found outside the testis.	Human Reproduction		\checkmark		
79	4	Glomus is the genus of fungus forming mycorrhiza and helps in phosphorous absorption by plants.	Strategies in Food Production		\checkmark		
80	2	Large sized climbers are seen in tropical forests	Organism and Population		\checkmark		
81	1	Ciliated columnar epithelial cells are present in the ligning of fallopian tubes and bronchioles.	Structural Organisation in Animals		\checkmark		
82	2	Blood group ' O ' is called universal donor.	Principles of Inheritance and Variations		\checkmark		
83	3	IUD's are most commonly used contraceptive devices in India.	Reproductive Health		\checkmark	-	
84	4	CAM pathway operates in monocots like maize and helps to conserve water.	Organisms and Population		$\sqrt{ }$		
85	1	Leghaemoglobin in plants acts as an oxygen scavanger.	Mineral Nutrition	,	$\sqrt{ }$		
86	1	Bundle of his is a part of conducting system of human heart.	Body fluids and Circulation		\checkmark		
87	1	Organisms like methanogens most abundant in cattle yard.	Microbes and Human Welfare		\checkmark		
88	4	In human adults rennin absent and pepsin initiates milk digestion.	Digestion and Absorption		\checkmark		
89	3	Rhodopsin is a derivative of vitamin A	Neural control and Coordination		\checkmark		
90	4	RNA interference is also known as mRNA silencing is a part of natural defensive mechanism in eukaryotes.	Biotechnology		\checkmark		
91	1	E. coli is a prokaryote.	Biological Classification		\checkmark		
92	1	XO condition in humans is turners syndrome in grass hopper XO are femles.	Principles of Inheritance and Variations	\checkmark			
93	1	Maximum number of existing transgenic animals are Mice.	Biotechnology			\checkmark	
94	1	There are 50,000 varieteies of rice in India.	Biodiversity	\checkmark			
95	1	For the production of antibiotics sugar is to be continuously added.	Biotechnology			\checkmark	
96	1	Aleurone cells are triploid so the	Reproduction		\checkmark		

		chromosome number is 63.	$\begin{aligned} & \text { in Flowering } \\ & \text { Plants } \end{aligned}$				
97	4	Converts atmospheric nitrogen to nitrogen compounds.	Mineral Nutrition in Plants		\checkmark		
98	3	It is perfomed by aerobic organisms.	Microbes in Human Welfare	\checkmark			
99	4	Agrobacterium is called as 'Nature's genetic Engineer'	Strategies for Enhancement in Food Production		\checkmark		
100	4	Standing state refers to amount of inorganic substances available in the ecosystem.	Ecosystem		\checkmark		
101	3	Enzyme thrombin converts fibrinogen to fibrin	Body Fluids and Circulation		\checkmark		
102	2	In declining populations, prereproductive groups are lesser than the reproductive group.	Organism and Population		\checkmark		
103	1	Golgi bodies are involved in protein and lipid concentration	Cell; The Unit of Life		\checkmark		
104	3	Gizzard acts as the grinding machine of cockroach. Mandibles are the part of cutting and chewing mouth parts of cockroaches.	Structural Organisation in Animals		\checkmark		
105	4	The epithelial cells of Bowman's capsule are called podocytes.	Excretory Products and Elimination		\checkmark		
106	3	Sexual dimorphism is distinct in Ascaris lumbricoids.	Animal Kingdom		\checkmark		
107	3	The plane of alignment of the chromosomes at metaphase is known as the metaphase plate.	Cell Division		$\sqrt{ }$	=	
108	1	Germplasm collection is one of the major steps in plant breeding programme.	Strategies for Enhancement in Food Production		v		
109	1	Chilli coming under the family solanaceae.	Morphology of Flowering Plants		\checkmark		
110	3	Molasses - Fermented byproducts in sugar industry.	Biotechnology		$\sqrt{ }$		
111	2	$400-700 \mathrm{~nm}$ is PAR.	Ecosystem		\checkmark		
112	1/3	Sulphur and calcium are immobile PAR elements.	Mineral Nutrition		\checkmark		
113	4	Saccharomyces cerevisiae is used for fermenting malted cereals and fruit juices to produce ethanol.	Microbes in Human Welfare		\checkmark		
114	2	About 97% of oxygen is transported in the form of oxy-haemoglobin.	Body Fluids and Circulation		\checkmark		
115	2	In parasitism, one species get benefit and other one is harmed.	Organisms and Population		\checkmark		
116	2	Helper cells inturn activates both B lymphocytes and cytotoxic Tlymphocytes.	Human Health and Diseases		\checkmark		
117	2	Methyl isocyanate is not a radio active substance.	Environmental Issues			\checkmark	
118	1	Ground tissue consists of simple tissues like parenchyma, collenchyma and sclerenchyma cells.	Anatomy of Flowering Plants		\checkmark		
119	1	Option ' 1 ' shows the correctly matched parts of female reproductive system.	Human Reproduction			\checkmark	

120	1	Eutrophication is the natural ageing of lake by nutrient enrichment.	Environmental Issues		\checkmark		
121	1	Zygomorphic characteristicFabaceae. flowersarethe feature of	Morphology of Flowering Plants		\checkmark		
122	4	A drupe is developed from monocarpellary superior ovaries and are one seeded fruit with hard endocarp.	Morphology of Flowering Plants		\checkmark		
123	3	23 S rRNA is involved in the formation of peptide bond during translation.	Molecular Basis of Inheritance			\checkmark	
124	3	The evolution of modern man appears to parallel evolution of human brain and language.	Evolution			\checkmark	
125	2	Ribosomes are the membraneless ribonucleoprotein structures concerned with protein synthesis.	Cell; The Unit of Life		\checkmark		
126	1	Salamandra is the tailed amphibia with limbs.	Animal Kingdom			\checkmark	
127	4	```Tiger - Panthera tigris (Genus, Speices)```	Biological Classification			\checkmark	
128	3	In plants, mutations can be artificially induced by using the gamma radiations.	Strategies for Enhancement in Food Production			\checkmark	
129	3	The guard cells possess chloroplasts and regulate the opening and closing of stomata.	Anatomy of Flowering Plants		\checkmark		
130	3	Wind pollination (Anemophily) is common in grasses.	Sexual Reproduction in Flowering Plants	0			
131	1	Renal pyramids are present in the medullary region of kidney, where as convoluted tubules are located at the cortical region.	Excretory Products and Elimination		V		
132	3	Himgiri is a hybrid variety of wheat that shows resistivity towards Hill bunt.	Strategies in Food Production		\checkmark		
133	2	Chondrichthyes are marine animals and have cartilagenous endoskeleton, with streamlined body.	Animal Kingdom		\checkmark		
134	1	Tears consists of lysozyme enzyme.	Human Health and Disease		\checkmark		
135	3	It is more permeable to K^{+}ion and nearly impermeable to Na^{+}.			\checkmark		
136	4	Polyembryony refers to presence of move than one embyyo inside the seeds.	Sexual Reproduction in Flowering Plants		\checkmark		
137	3	Ribosomes are the protein synthesising units of the cell.	Biomolecules	\checkmark			
138	4	Hybrid vigour is known as heterosis.	Strategies in Food Production		\checkmark		
139	2	Periderm consists of phellum, phellogen and phelloderm.	Anatomy of Flowering Plants		\checkmark		
140	1	The curve represents relationship between enzyme's and temperature.	Biomolecules			\checkmark	

141	4	In reptiles and birds the excretory matter is uric acid.	Excretory Products and Elimination	V			
142	4	Maintain a temperature 2° C lesser than body temperature.	Human Reproduction		V		
143	2	Rhizobium is present in leguminous plants.	Strategies in Food Production			V	
144	1	Puccinia is rust fungus.	Biological Classification		V		
145	3	Cleistogamy flowers do not open.	Sexual Reproduction in Flowering Plants		V		
147	4	Peach exhibits perigynous ovary.	Morphology of Flowering Plants		V		
148	4	Less water in the body stimulates the production of ADH.	Excretory products and Elimination		V		
149	4	Marchanita exhibits heterothallism.	Plant Kingdom	V			
150	1	Sporozoites of malarial parasite is seen in the saliva of infected female anopheles mosquito.	Human Health and Disease		V		

151	2	Lowest reduction potential highest reducing power	Electrochemist ry	\checkmark			
152	1	C_{2} and C_{3} atoms are sp hybridised	Basic Pinciples of organic chemistry	$\sqrt{ }$			
153	1	The reducing agent used in Clemmensen reduction is $\mathrm{Zn}-\mathrm{Hg}$ and HCl	Aldehydes, ketones and carboxylic acids	$\sqrt{ }$		2	
154	4	$\begin{aligned} \mathrm{P}_{\mathrm{N}_{2}} & =\mathrm{X}_{\mathrm{N}_{2}} \cdot \mathrm{P} \\ & =0.5 \times 1 \\ & =0.5 \mathrm{~atm} \end{aligned}$	States of Matter				
155	1	(A)	Alcohols, phenols and ethers		\checkmark		

156	3	$\frac{x}{m} \alpha \mathrm{P} / \mathrm{T}$	Surface Chemistry		\checkmark		
157	1	$\begin{aligned} & \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{K}_{\mathrm{f} \times \mathrm{m}} \\ & \mathrm{i}=\frac{3.82 \times 142 \times 45}{1.86 \times 5 \times 1000} \\ & =2.63 \end{aligned}$	Solutions		\checkmark		
158	4	NO_{2}^{-}and NO_{3}^{-}are sp^{2} hybridised	Chemical Bonding		\checkmark		
159	4	Mn^{2+} has five unpaired electrons, $\mathrm{H}_{2} \mathrm{O}$ is a weak field ligand	Co-ordination compounds	\checkmark			
160	2	Co^{3+} is a stronger oxidizing agent than Mn^{3+} Fe^{3+} is a milder oxidizing agent Cr^{2+} is strongly reducing	d- Block Elements			\checkmark	
161	2	For dissociation, $\mathrm{i}>1$ For association, $\mathrm{i}<1$	Solutions	\checkmark			
162	2	(+) Lactose is a reducing sugar and it exhibits mutarotation	Biomolecules		\checkmark		
163	3	$\Delta G^{\circ}=-n F E^{\circ}$ When E° is negative, then $\begin{aligned} & \Delta \mathrm{G}^{\circ}>0 \\ & \mathrm{E}^{\circ}=\frac{\mathrm{RT}}{\mathrm{nF}} \operatorname{lnK} \end{aligned}$ When E° is negative, then $\mathrm{K}=10^{-\mathrm{x}}$ which is less than one.	Electrochemist ry		\checkmark		
164	1	Diphenyl hydramine (benadryl) is used as an antihistamine	Chemistry in everyday life		\checkmark		
165	1	Pig iron contain 4% carbon. It is the major impurity.	Metallurgy	\checkmark			
166	1	$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is diamagnetic	Co-ordination compounds				
167	1	E° nE° $\mathrm{Cu}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}$ 0.15 0.15 $\mathrm{Cu}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}$ 0.50 0.50 $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$ 0.325 0.65	Electrochemist ry				
168	3	$\begin{aligned} \Delta \mathrm{S} & =\frac{\Delta \mathrm{H}}{\mathrm{~T}} \\ & =\frac{30000}{300 \mathrm{~K}_{\mathrm{mol}}}-1 \mathrm{~J} \\ & =100 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$	Thermodynami Cs	\checkmark			
169	3	Order can also have fractional values	Kinetics	\checkmark			
170	4	$\begin{aligned} & \mathrm{C}-\mathrm{H}: 0.109 \mathrm{~nm} \\ & \mathrm{C}=\mathrm{C}: 0.134 \mathrm{~nm} \\ & \mathrm{C}-\mathrm{O}: 0.143 \mathrm{~nm} \\ & \mathrm{C}-\mathrm{C}: 0.154 \mathrm{~nm} \\ & \hline \end{aligned}$	Basic concepts in organic chemistry		\checkmark		
171	2	BF_{3} is electron deficient	Equilibrium	\checkmark			
172	4	Terylene is a polyester	Polymers	\checkmark			
173	1	$\begin{aligned} \mathrm{pOH} & =\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { Salt }]}{[\text { Base }]} \\ & =-\left[\log 1.8 \times 10^{-5} \times 1.5\right] \\ & =-\log 2.7 \times 10^{-5} \\ & =5-0.43 \\ \mathrm{pH} & =14-(5-0.43) \\ & =9.43 \end{aligned}$	Equilibrium			\checkmark	
174	1	$\begin{aligned} \mathrm{E}_{\text {cell }}^{0} & =\mathrm{E}_{\mathrm{ox}}^{0}+\mathrm{E}_{\mathrm{red}}^{0} \\ & =0.74+0.15 \\ & =0.89 \mathrm{~V} \end{aligned}$	Electrochemist ry	\checkmark			

175	2	(A) (B) (C)	Amines		\checkmark		
176	2	In pyrosilicate only one oxygen atom is shared	p-Block elements		\checkmark		
177	4	 4-Ethyl-3-propylhex-1-ene	Hydrocarbons		\checkmark		
178	4	Reduction of nitrobenzene with $\mathrm{Zn} / \mathrm{NH}_{4} \mathrm{Cl}$ (neutral medium) gives phenyl hydroxylamine	Amines			\checkmark	Not included in the present syllabus
179	2	For an adiabatic process, $q=0$ and For free expansion, $\mathrm{w}=0 \therefore \Delta \mathrm{~T}=0$	Thermodynami CS		\checkmark		
180	2	$\begin{array}{ll} 2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{H}_{(\mathrm{g})} & \Delta \mathrm{H}=869.6 \mathrm{~kJ} \\ \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{(\mathrm{g})} & \Delta \mathrm{H}=434.8 \mathrm{~kJ} \\ \hline \end{array}$	Thermodynamics	$\sqrt{2}$			
181	1	$\begin{aligned} & \frac{t_{A}}{t_{B}}=\sqrt{\frac{M_{A}}{M_{B}}} \\ & 2=\sqrt{\frac{49}{M_{B}}} \\ & M_{B}=12.25 u \end{aligned}$	States of Matter			${ }^{2}$	
182	2	They are co-ordination isomers	Co-ordination compounds	\checkmark			
183	1	$\mathrm{Zr} \& \mathrm{Ti}$ are purified by van Arkel method	Metallurgy	\checkmark			
184	2	Reaction of alkyl halide with ammonia to form amine is a nucleophilic substitution reaction	Haloalkanes and haloarenes		\checkmark		
185	2	Cal_{2} is most covalent and has the lowest melting point.	Chemical bonding		\checkmark		
186	1	Maximum no. of electrons $=2 n^{2}$ Maximum number of atomic orbitals $=\mathrm{n}^{2}=16$	Atomic Structure	\checkmark			
187	1	 (o-cresol) Phenolic group highly activates the benzene ring towards electrophilic substitution	Alcohols, phenols and ethers		\checkmark		
188	3	$\begin{aligned} \frac{V_{1}}{V_{2}} & =\sqrt{\frac{T_{1}}{T_{2}}} \\ & =\sqrt{2}=1.4 \end{aligned}$	States of Matter		\checkmark		

189	1	$\begin{aligned} & \mathrm{V}_{0}=\frac{700 \times 55 \times 273}{300 \times 760} \\ & \therefore \% \text { of } \mathrm{N}= \\ & \frac{28 \times 700 \times 55 \times 273 \times 100}{22400 \times 0.35 \times 300 \times 760} \\ & =16.45 \end{aligned}$	Basic concepts of organic chemistry		\checkmark		
190	4	There are three geometrical isomers. The complex is square planar and is of the type [M(abcd)]	Co-ordination compounds		\checkmark		
191	1	1.0 molal aq. soln $\rightarrow 1.0$ mole in 1000 g water \therefore Mole fraction of solute $=\frac{1}{1+55.5}=0.0177$	Solutions		\checkmark		
192	3	Reaction is exothermic and the no. of moles of gaseous products is less than that of the reactants \therefore the forward reaction is favoured at high pressure and low temperature	Equilibrium	\checkmark			
193	4	$\mathrm{Na}_{2} \mathrm{~S}$ and NaCN , if present in the extract, will be decomposed to $\mathrm{H}_{2} \mathrm{~S}$ and HCN by HNO_{3}. These will escape from the solution and will not interfere with the test for halogens	Basic concepts of organic chemistry	\checkmark			
194	2	$\begin{array}{ll} \mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO} & \mathrm{~K}_{1} \\ 2 \mathrm{NO}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2} & \mathrm{~K}_{2} \\ \mathrm{~N}_{2}+2 \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2} & \mathrm{~K}_{1} \times \mathrm{K}_{2} \\ \mathrm{NO}_{2} \rightleftharpoons 1 / 2 \mathrm{~N}_{2}+\mathrm{O}_{2} & \left.\frac{1}{\mathrm{~K}_{1} \mathrm{~K}_{2}}\right]^{1 / 2} \end{array}$	Equilibrium		\checkmark		
195	1	$\begin{aligned} & \frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{\lambda_{2}}{\lambda_{1}} \\ & \frac{1}{2}=\frac{\lambda_{2}}{\lambda_{1}} \end{aligned}$	Atomic Structure		1		
196	4	Minimum bond length \rightarrow Maximum bond order Bond order is the highest for O_{2}^{+}	Chemical Bonding		\checkmark		
197	4	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ is reduced to Cr^{3+} -	d \& f-block elements	\checkmark			
198	1	Growth of fish is inhibited if concentration of D.O is below 6 ppm	Environmental chemistry		\checkmark		
199	4	$6 \mathrm{~s}, 4 \mathrm{f}, 5 \mathrm{~d}, 6 \mathrm{p}$	Atomic Structure		\checkmark		
200	1	$\mathrm{Ca}(\mathrm{OCl})_{2}$ in bleaching powder releases chlorine	p-block elements		\checkmark		

